Dynamic Biomechanical Examination of the Lumbar Spine with Implanted Total Spinal Segment Replacement (TSSR) Utilizing a Pendulum Testing System
نویسندگان
چکیده
BACKGROUND Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. METHODS Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. RESULTS The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). CONCLUSIONS Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions.
منابع مشابه
Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study
Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...
متن کاملA compliant-mechanism approach to achieving specific quality of motion in a lumbar total disc replacement
BACKGROUND The current generation of total disc replacements achieves excellent short- and medium-term results by focusing on restoring the quantity of motion. Recent studies indicate that additional concerns (helical axes of motion, segmental torque-rotation behavior) may have important implications in the health of adjacent segments as well as the health of the surrounding tissue of the opera...
متن کاملMechanical Instability on Lumbar Spine at the Adjacent and Subjacent Segment after Rigid Fixation
To investigate the effect of PLIF and after rigid fixation on adjacent segment and subjacent mechanical instability moreover under loading adjacent and subjacent segment mechanical behavior. Eleven fresh-frozen lamb lumbar spines (Sacrum-T12) were loaded, in axial, flexion-extension, right-left bending directions. All specimens were tested intact and after implantation with posterior pedicle sc...
متن کاملBiomechanical Evaluation of Pedicle Screw-Based Dynamic Stabilization Devices for the Lumbar Spine: A Systematic Review
STUDY DESIGN This study is a systematic review of published biomechanical studies involving pedicle screw-based posterior dynamic stabilization devices (PDS) with a special focus on kinematics and load transmission through the functional spine unit (FSU). METHODS A literature search was performed via the PubMed online database from 1990 to 2008 using the following key words: "biomechanics," "...
متن کاملBiomechanical study of lumbar spine with artificial disc replacement using three-dimensional finite element method
Biomechanical analyses on lumbar spine under compressive load and flexion torque were performed using a nonlinear three-dimensional finite element method to evaluate the stability of artificial disc replacement. We prepared a validated intact lumbar L4-L5 motion segment and artificial disc inserted motion segment by replacing intact disc with the artificial disc which is being developed. Effect...
متن کامل